首页 资讯 查看内容

每日报道:电子轨道杂化理论_电子轨道

2023-04-13 06:24:19

来源: 科学教育网

关 于 电子轨道杂化理论_电子轨道的知识大家了解吗?以下就是小编整理的关于电子轨道杂化理论_电子轨道的介绍,希望对大家有帮助!


(资料图片)

1、〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

2、 原子结构。

3、核外电子运动状态,用s、p、d等来表示基态构型(包括中性原子、正离子和负离子),核外电子排布。

4、电离能和电负性。

5、 原子结构理论的发展简史 古代希腊的原子理论 该理论产生公元前 400 年,希腊哲学家德模克利特( Democritus ), 提出万物由原子产生的思想。

6、 道尔顿( J. Dolton )的原子理论 19 世纪初,英国中学教师 J. Dolton 创立了原子学说,基本观点包括: ①一切物质都是由不可见的,不可再分的原子组成,原子不能自生自灭 ②同种类的原子具有相同的性质,不同的原子性质不同; ③每一种物质都由特定的原子组成。

7、 原子学说成为 19 世纪初化学理论的基础,推动了 19 世纪化学的迅速发展。

8、 卢瑟福( E.Rutherford )的行星式原子模型 1911 年,英国物理学家 E.Rutherford 的 α 粒子散射实验,证实了原子中带正电的原子核只是一个体积极小,质量大的核,核外电子受原子核的作用而在核外围空间运动,就像太阳系中的行星绕太阳旋转一样,称为行星式原子模型。

9、 作者: 讲师甲 2006-9-14 22:23 回复此发言 2 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

10、 玻尔( N.Bohr )原子结构理论 波尔理论的要点: 1. 核外电子运动的轨道角动量( L )是量子化的,它在数值上是h/2Pi 的整数倍 2. 电子在一定轨道上运动的电子的能量也是量子化的,总能量 3. 原子在正常或稳定状态时,电子尽可能处于能量最低的状态 , 即基态( ground state )。

11、 当原子获得外界提供能量时,电子将会跃迁到能量较高的轨道上,处于激发态的电子从一个能级跳到另一能级时,要吸收或放出能量,其能量取决于跃迁前后两轨道的能量差; 电子云模型 作者: 讲师甲 2006-9-14 22:31 回复此发言 3 四个量子数 ( n 、 l 、 m 、 ms ) 描述原子核外电子运动状态 四个量子数 ( n 、 l 、 m 、 ms ) 描述原子核外电子运动状态 1. 主量子数 n n = 1, 2, 3, 4… 正整数,它决定电子离核的平均距离 、能级和电子层。

12、在单电子原子中, n 决定电子的能量,在多电子原子中 n 与 l 一起决定电子的能量: n 确定电子层( n 相同的电子属同一电子层): n 1 2 3 4 5 6 7 电子层 K L M N O P Q 2. 角量子数 l l 的取值是受主量子数的限制的,对每个 n 值: l = 0, 1, 2, 3… n - 1 ,共 n 个值; l 能够确定原子轨道和电子云在空间的角度分布情况(形状); 原子轨道的形状取决于 l ; 在多电子原子中, n 与 l 一起决定的电子的能量;对于单电子体系,电子的能量只与主量子数有关。

13、 l 表示的 电子亚层,即 l 取值对应电子亚层。

14、 l 0 1 2 3 4 电子亚层:s p d f g 作者: 讲师甲 2006-9-16 19:31 回复此发言 4 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

15、 例如: n = 4, 角量子数 l 可取: 0 , 1 , 2 , 3 n = 4 时, l = 0 : 表示轨道为第四层的 4 s 轨道, 形状为球形 l = 1 : 表示轨道为第四层的 4 p 轨道, 形状为哑铃形 l = 2 : 表示轨道为第四层的 4 d 轨道, 形状为花瓣形 l = 3 : 表示轨道为第四层的 4 f 轨道, 形状复杂 作者: 讲师甲 2006-9-16 19:32 回复此发言 5 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

16、 . 磁量子数 m m 的取值是 l 值的限制的 , m = 0, ± 1, ± 2…… ± l ( 共 2 l + 1 个值)。

17、 m 的不同不影响电子的能量,只影响轨道在空间的伸展方向。

18、 m 值决定波函数 ( 原子轨道 ) 或电子云在空间的伸展方向:由于 m 可取( 2 l +1 )个值,所以相应于一个 l 值的电子亚层共有(2l +1)个取向,例如 p 轨道, l = 1 , m = 0 ,± 1, 则 p 轨道共有 3 种取向。

19、 4. 自旋量子数 ms ms = ±1/2 , 表示同一轨道中电子的二种自旋状态。

20、 ms当一个轨道中 存在二个电子时 根据四个量子数的取值规则,则每一电子层中可 容纳的电子总数为 2n2 . 作者: 讲师甲 2006-9-16 19:33 回复此发言 6 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

21、 例 1 : 用四个量子数描述主量子数 n =1 , n =2 , n =3 的电子运动的状态。

22、 贴子相关图片: 作者: 讲师甲 2006-9-16 19:34 回复此发言 7 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

23、 . 贴子相关图片: 作者: 讲师甲 2006-9-16 19:35 回复此发言 8 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

24、 . 贴子相关图片: 作者: 讲师甲 2006-9-16 19:37 回复此发言 9 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

25、 . 贴子相关图片: 作者: 讲师甲 2006-9-16 19:37 回复此发言 10 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

26、 . 贴子相关图片: 作者: 讲师甲 2006-9-16 19:38 回复此发言 11 回复:〖第4讲〗原子结构、核外电子运动状态、电离能和电负性。

27、 . 贴子相关图片: 一、原子核外电子排布的原理 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。

28、 1.最低能量原理 电子在原子核外排布时,要尽可能使电子的能量最低。

29、怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。

30、这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。

31、电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。

32、当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。

33、一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。

34、这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p…… 2.保里不相容原理 我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、电子亚层、电子云的伸展方向以及电子的自旋方向。

35、在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是保里不相容原理所告诉大家的。

36、根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。

37、也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。

38、这一点好像我们坐电梯,每个人相当于一个电子,每一个电梯相当于一个轨道,假设电梯足够小,每一个电梯最多只能同时供两个人乘坐,而且乘坐时必须一个人头朝上,另一个人倒立着(为了充分利用空间)。

39、根据保里不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;f亚层有5个轨道,总共可以容纳10个电子。

40、我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子;第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。

41、 3.洪特规则 从光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于 全满(s2、p6、d10、f14) 半满(sp3、d5、f7) 全空(s0、p0、d0、f0)时比较稳定。

42、这类似于我们坐电梯的情况中,要么电梯是空的,要么电梯里都有一个人,要么电梯里都挤满了两个人,大家都觉得比较均等,谁也不抱怨谁;如果有的电梯里挤满了两个人,而有的电梯里只有一个人,或有的电梯里有一个人,而有的电梯里没有人,则必然有人产生抱怨情绪,我们称之为不稳定状态。

43、 二、核外电子排布的方法 对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层,每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。

44、最外层电子到底怎样排布,还要参考洪特规则,如24号元素铬的24个核外电子依次排列为 1s22s22p63s23p64s23d4 根据洪特规则,d亚层处于半充满时较为稳定,故其排布式应为: 1s22s22p63s23p64s13d5 最后,按照人们的习惯“每一个电子层不分隔开来”,改写成 1s22s22p63s23p63d54s1 即可。

45、 三、核外电子排布在中学化学中的应用 1.原子的核外电子排布与轨道表示式、原子结构示意图的关系:原子的核外电子排布式与轨道表示式描述的内容是完全相同的,相对而言,轨道表示式要更加详细一些,它既能明确表示出原子的核外电子排布在哪些电子层、电子亚层上, 还能表示出这些电子是处于自旋相同还是自旋相反的状态,而核外电子排布式不具备后一项功能。

46、原子结构示意图中可以看出电子在原子核外分层排布的情况,但它并没有指明电子分布在哪些亚层上,也没有指明每个电子的自旋情况,其优点在于可以直接看出原子的核电荷数(或核外电子总数)。

47、 2.原子的核外电子排布与元素周期律的关系 在原子里,原子核位于整个原子的中心,电子在核外绕核作高速运动,因为电子在离核不同的区域中运动,我们可以看作电子是在核外分层排布的。

48、按核外电子排布的3条原则将所有原子的核外电子排布在该原子核的周围,发现核外电子排布遵守下列规律:原子核外的电子尽可能分布在能量较低的电子层上(离核较近);若电子层数是n,这层的电子数目最多是2n2个;无论是第几层,如果作为最外电子层时,那么这层的电子数不能超过8个,如果作为倒数第二层(次外层),那么这层的电子数便不能超过18个。

49、这一结果决定了元素原子核外电子排布的周期性变化规律,按最外层电子排布相同进行归类,将周期表中同一列的元素划分为一族;按核外电子排布的周期性变化来进行划分周期 如第一周期中含有的元素种类数为2,是由1s1~2决定的 第二周期中含有的元素种类数为8,是由2s1~22p0~6决定的 第三周期中含有的元素种类数为8,是由3s1~23p0~6决定的 第四周期中元素的种类数为18,是由4s1~23d0~104p0~6决定的。

50、 由此可见,元素原子核外电子排布的规律是元素周期表划分的主要依据,是元素性质周期性变化的根本所在。

51、对于同族元素而言,从上至下,随着电子层数增加,原子半径越来越大,原子核对最外层电子的吸引力越来越小,最外层电子越来越容易失去,即金属性越来越强;对于同周期元素而言,随着核电荷数的增加,原子核对外层电子的吸引力越来越强,使原子半径逐渐减小,金属性越来越差,非金属性越来越强。

52、 3.元素原子的核外电子排布与元素的化学性质 元素的化学性质直接决定于该元素原子的核外电子排布情况,如碱金属元素的最外层电子结构可表示为ns1,说明碱金属元素一般容易失去最外层的1个电子(价电子),变成正一价的阳离子,从而形成惰性气体的稳定结构(此性质即强还原性);而卤素的最外层电子结构可表示为ns2np5,说明卤素在一般情况下很容易得到1个电子,变成负1价的阴离子,从而形成惰性气体的稳定结构(此性质即强氧化性),当然,它们也可以失去最外层的价电子而呈现出++3、+5、+7等价态。

53、对于同一族元素而言,随着电子层数的增加,金属性越来越强,非金属性越来越弱,这也取决于元素原子的核外电子排布情况。

54、有了这些理论知识作指导(如下式所示),我们可以理解和推测元素的化学性质及其变化规律,从而大大减轻我们的记忆量。

关键词:

最新新闻
回顶部